Combined effects of PEGylation and particle size on uptake of PLGA particles by macrophage cells

T. Moayedian; F. Mosaffa; B. Khameneh; M. Tafaghodi

School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

ABSTRACT:
Objective: At the present study, relationship between phagocytosis of PLGA particles and combined effects of particle size and surface PEGylation was investigated.

Materials and Methods: Microspheres and nanospheres (3500 nm and 700 nm) were prepared from three types of PLGA polymers (non-PEGylated and PEGylation percents of 9% and 15%). These particles were prepared by solvent evaporation method. All particles were labeled with FITC-Albumin. Interaction of particles with J744.A.1 mouse macrophage cells, was evaluated in the absence or presence of 7% of the serum by flowcytometry method.

Results: The study revealed more phagocytosis of nanospheres. In the presence of the serum, PEGylated particles were phagocytosed less than non-PEGylated particles. For nanospheres, this difference was significant (P<0/05) and their uptake was affected by PEGylation degree. In the case of microsphere formulation, PEGylation did not affect the cell uptake. In the serum-free medium, the bigger particles had more cell uptake rate than smaller ones but the cell uptake rate was not influenced by PEGylation.

Conclusion: The results indicated that in nanosized particles both size and PEGylation degree could affect the phagocytosis, but in micron sized particles just size, and not the PEGylation degree, could affect this.

Key words: PLGA particles, PEGylation, Phagocytosis, Size

INTRODUCTION
Nanocarrier drug delivery systems (nDDS) such as polymeric nanoparticles, solid lipid nanoparticles and nanoliposomes could be used as a novel mean to treat some of the major diseases (1-4). Delivery via nanocarrier-based formulations is being pursued because of enhancing therapeutic effects or alleviating the safety problems. A wide range of hydrophilic and macromolecular drugs, such as peptides, proteins and genes have been encapsulated within polymeric nanoparticles (5-7). Poly (D, L-lactic-co-glycolic acid) (PLGA) polymers possess unique features such as being biodegradable, biocompatible, and FDA-approved. Many drugs have been encapsulated with biodegradable PLGA nanospheres. PLGA is also frequently used for mucosal delivery of drugs and antigens (8-11).

Despite of these advantages, a few nanoparticles were successful in clinical trials. It is mainly due to mononuclear phagocytic system (MPS) which is also known as the reticuloendothelial system (RES). RES uptakes the nDDSs and removes them from systemic circulation. These processes are generally called opsonisation, which is one of the most important biological barriers against nDDSs (12-13).

After IV administration, macrophages of the MPS are able to immediately remove the non-stealth nDDSs from the bloodstream, and led to ineffective treatment. Subsequently, preventing from RES uptake is a challenge for nDDSs (14).

It is well-established that biological fate of the particles is influenced by various parameters such as their particle size, surface charge and surface hydrophilicity (15-17).
It has been proved that PEGylation could be an anti-opsonisation strategy and is the most effective approach to prevent from phagocytosis (18-20). PEG chains create a barrier layer and subsequently prevent particles from adhesion of macrophage cells. This can make the particles camouflaged or invisible to phagocytic cells. Changing the physicochemical properties of particles is another approach to increase their half-life. It has been shown that phagocytosis of particles was drastically influenced by their mean size and size distribution and controlling the particle size is essential to reduce the phagocytosis (21).

The aim of the present study was to evaluate the simultaneous effects of particle size and surface PEGylation on phagocytosis of PLGA particles.

MATERIALS AND METHODS

Materials

PLGA 50:50 (Resomer® RG 502H, intrinsic viscosity 0.18 dl/g), PLGA 50:50-PEG Resomers® (9% PEG, iv 0.72 dl/g and 15% PEG, iv 0.5 dl/g) were obtained from Boehringer Ingelheim (Germany). Polyvinyl alcohol (PVA, MW 30–70 KDa) and Bovine serum albumin (Fraction V) were purchased from Sigma (St. Louis, MO). Fluorescein-4-isothiocyanate (FITC-1) was purchased from Fluka (Switzerland). Cell culture media and materials were products of Gibco BRL (Grand Island, NY). J744.A.1 macrophage cells were obtained from the Pasteur Institute (Tehran, Iran).

Preparation, labeling and characterization of PLGA particles

In preliminary studies, three different methods were used for preparation of the PLGA particles, emulsion solvent diffusion (ESD), oil-in-water emulsion-solvent evaporation and water-in-oil-in water emulsion-solvent evaporation. Based on the early results the single oil-in-water emulsification – solvent evaporation method was used for the main study.

In this method, 100 mg of PLGA was dissolved in 300 μl of DCM (oil phase). To prepare various sizes of particles, different concentrations of PVA solution (1-5% w/v) in deionized water were used as aqueous phase. The oil phase was added dropwise to the aqueous phase. The preparation parameters were listed in table 1. The o/w emulsion was added to bigger volumes of PVA solution, and the solvent was evaporated under magnetic stirring. Particles were separated by centrifugation at 10000 g for 10 min and washed twice with deionized water. and then resuspended in 1 ml water. Before freeze-drying step, to prevent from aggregation, 5% (w/v) mannitol was dissolved in final suspension (10).

For labeling of particles, fluorescein isothiocyanate (FITC) labeled albumin was used. 200-300 μl of FITC-albumin (20% w/v) was added to the aqueous phase before evulsification (22). The details of preparation methods and types of polymers were listed in table 1. The physicochemical properties of particles such as particle size, size distribution and zeta potential were afterward measured. To show the fluorescent properties of particles, fluorescent microscope images were recorded.

Cell uptake studies

The fabricated particles were incubated with J744 A.1 mouse macrophage cells, both in the absence and presence of serum. Briefly, the cell line was cultured in DMEM F12 medium supplemented with 10% fetal calf serum (FCS). For uptake study, 6-well plates were used to seed the cells (5 x 10^3 cells per well) and the cells were allowed to attach for 2 h. The medium in each well was replaced with 1 ml of freshly prepared particle suspension in PBS (100 or 200 g/well) and the plates were incubated for 1 h. The cells were then washed twice with PBS to remove the non-internalized particles and harvested using trypsin-EDTA treatment followed by centrifugation and resuspending in PBS. Flow cytometry analysis was performed within 1 h.

In this method, 10000 cells were counted and analyzed by measuring signal from FITC channel of the flowcytometer (Partec AG, Switzerland).

Statistical analysis

All tests were performed at least in triplicate. One-way analysis of variance (ANOVA) was performed by Graphpad Instat for testing of differences between groups. \(P < 0.05 \) was considered to be statistically significant.

RESULTS AND DISCUSSION

Characterization of particles

Among preparation methods tested in preliminary studies (data not shown), single emulsion - solvent evaporation method showed the best results (Table 2). The fluorescence of particles was showed by fluorescent microscope (Fig 1).
To optimize the formulations, various parameters such as PVA concentration, type of surfactant and the effect of mannitol were tested. Based on the DLS results, for non-pegylated particles, lower concentrations of PVA (1% w/v) could decrease the particle size. However, for PEGylated particles, higher PVA concentration was able to reduce the size of particles. This finding was in contrast with previously published data. It is expected that in the higher concentrations of PVA, as a surfactant, smaller size and PDI could be attained (23). This discrepancy could be attributed to the lower intrinsic viscosity of the PLGA polymer (0.18 dl/g) compared with PEG-PLGA polymers (0.5 and 0.72 dl/g respectively for 15% and 9% PEG-PLGA). It is supposed that in preparation of PLGA particles, low viscosity of polymers allows for preparation of small sized particles in presence of lower concentration of surfactant. But in the case of PEG-PLGA, because of higher viscosity of polymers, higher concentration of PVA is required for decreasing the particle size.

The effect of mannitol in the freeze drying step - was also evaluated. The results indicated that in the absence of mannitol, the particle size slightly increased (Data not shown). The data indicated that mannitol, as a cryoprotective agent, could prevent from aggregation of particles in freeze-drying step.

Cell uptake studies

The results of cell uptake studies were illustrated in Table 3.

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Z-average Mean (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microspheres F-1</td>
<td>3433</td>
<td>0.349</td>
<td>-2.61</td>
</tr>
<tr>
<td>Microspheres F-2</td>
<td>3676</td>
<td>0.098</td>
<td>-3.21</td>
</tr>
<tr>
<td>Nanospheres F-1</td>
<td>742.8</td>
<td>0.174</td>
<td>-2.68</td>
</tr>
<tr>
<td>Nanospheres F-2</td>
<td>1995</td>
<td>1</td>
<td>-2.32</td>
</tr>
<tr>
<td>Nanospheres F-3</td>
<td>1167</td>
<td>0.543</td>
<td>-3.48</td>
</tr>
</tbody>
</table>

In the presence of serum, there were no significant differences between cell uptake of nanospheres and microspheres (P>0.05). Upon PEGylation of particles, the extent of cell uptake was decreased. The lower uptake of 9% PEGylated nanospheres over 15% PEGylated nanospheres was observed in flowcytometry results (Table 2) (P<0.05). The results relating to the microspheres showed that PEGylation did not influence the rate of cell uptake and there were no significant differences between PEGylated and non-PEGylated forms (P >0.05). The least uptake was observed with 9% PEGylated nanospheres. In the absence of the serum, the bigger particles had more cell uptake than smaller ones.
The PEGylation effects were similar to the results in the presence of serum. The dependency of phagocytosis on particle size was previously described (21, 24). These observations were consistent with present study. In both the presence and absence of the serum, the phagocytosis of nanospheres was lower than microspheres. It was shown that particles with approximately 3 μm were phagocytosed more readily than smaller ones (21). Due to these observations and the particle size of microsphere in present study, enhancing the uptake of microsphere with respect to the nanospheres could be explained.

Surface modification of the particles is another approach to reduce the phagocytosis level. PEGylation is a promising strategy (25). As seen in table 2, upon PEGylation of particles, the phagocytosis level was decreased. These results indicated the influence of PEGylation on the prevention of phagocytosis. It was shown that preparation of stealth nanoparticles is appropriate strategy to enhance the circulation time (26). The presence and absence of serum is another factor in evaluation of the cell uptake results. Phagocytosis was reduced in the presence of serum. The results of present study were consistent with Leroux et al (27).

CONCLUSION
The results indicated that in nanosized particles both size and PEGylation degree could affect the phagocytosis, but in micron sized particles just size, and not the PEGylation degree, could affect this.

CONFLICT OF INTEREST
All authors declare that there is no conflict of interest in this study.

ACKNOWLEDGMENT
This study was supported by a grant from Vice Chancellor for Research of Mashhad University of Medical Sciences, Mashhad, Iran. The results reported in this paper were part of a Pharm.D. thesis.

REFERENCES
4. Mohajer M, Khameneh B, Tafaghodi M. Preparation and characterization of PLGA nanospheres loaded with...

How to cite this article: